
TUGboat, Volume 31 (2010), No. 2 1001

Drawing structured diagrams in SDDL

Mathieu Bourgeois and Roger Villemaire

Abstract

We present SDDL, a Structured Diagram Description
Language aimed at producing graphical representa-
tions for discrete mathematics and computer science.
SDDL allows combining graphical objects (circles,
lines, arrows, . . .) and LATEX boxes to produce dia-
grams representing discrete structures such as graphs,
trees, etc. with an easy-to-use domain specific lan-
guage.

1 What is SDDL?

SDDL, Structured Diagram Description Language,
is a high-level domain specific language tailored for
diagrams that have an inherent structure. Examples
of these might be trees, graphs and automata. Any
diagram that is naturally structured can be described
in SDDL. However, it was designed especially for
data structures appearing in computer science and
discrete mathematics.

The main objective of this language is to realize
drawings in a natural and structured way. Mainly,
one describes a drawing in SDDL in a way that is simi-
lar to drawing on a blackboard. For example, specific
shapes (like circles, ellipses, texts, boxes) are drawn
at positions that can be either absolute or relative
to specific points on already placed shapes. Since
we aim at mathematical drawings, text is handled
through LATEX.

Since exhibiting the structure of a diagram is es-
sential to our purpose, SDDL uses an object-oriented
hierarchy, completely written in Java, under our
high-level language. Having shapes as objects makes
structuring of diagrams easier and more intuitive
since most shapes are explicitly represented by a
class. Furthermore, extension by the end user is
quite feasible since Java is a well-known language.

At the lower level, SDDL uses another graphi-
cal description language for LATEX, namely Asymp-
tote [1]. Our tool produces Asymptote code, which
is finally converted to an encapsulated PostScript
(eps) vector file.

2 Canvas and shapes

A diagram in SDDL is defined by a main Canvas. It
is just like a standard painting canvas, in the sense
that we can place (or paint) different things on it
as much as we like. The things we can place inside
a Canvas are Shapes. Thus, for creating a “Hello,
world!” diagram, we would use the following:

put Text with [text = "Hello, world!"] in main;

resulting in:

Hello, world!

In this example, Text is a Shape, and it pos-
sesses a property text, which is the LATEX string
used to render the text. Each Shape defines a cer-
tain number of such properties.

SDDL permits the definition of variables. It is
a dynamically typed language, so variables don’t
have to be declared before being used. Variables
make it possible to reuse the same Shape at multiple
locations. For example,

a = Circle with [radius = 10.0];

put a at (-7.5, 0.0) in main;

put a at (7.5, 0.0) in main;

In this example, we specify the location where we
want our Shape to be. If a location is not specified
with the at clause, the Shape will be placed at the
point of origin of the current Canvas, which is its
center.

One important thing to note is that once a Shape
has been put in a Canvas, it is immutable. It cannot
be modified or removed. A Shape can be modified
after it has been drawn on a Canvas, but this will
have an effect only on later use of this object and will
not modify the actual Canvas in any way; a Shape

always appears in a Canvas as it was at the moment
it was added.

When a Shape is created, every property speci-
fied by the user is set, in the given order. It is not
necessary to specify all properties at once, nor to set
all of them. Most of the properties have appropriate
default values. However, some properties, if not set,
will yield strange results. For example, a circle with
no radius property set will have a default radius of 0.
Usually, property order is irrelevant. For instance,
giving for an ellipse the radius along the x-axis or
the y-axis first will yield exactly the same result.

a = Ellipse;

a = a with [xradius = 20.0];

a = a with [yradius = 10.0];

put a in main;

3 Structuring multiple canvases

Every diagram consists of a main Canvas. However,
we can define other Canvas objects if we wish. An
additional Canvas can be introduced using a typical
variable assignment. However, when a put command
is used, SDDL checks to see if the canvas variable is

Drawing structured diagrams in SDDL

1002 TUGboat, Volume 31 (2010), No. 2

already defined. If it isn’t, it automatically creates
an empty Canvas for use.

One of the main reasons to use other Canvases is
to create an explicit structure in our diagram. Since
a Canvas is a Shape, once a sub-Canvas has been
created, it can be placed inside the main Canvas, or
any other one for that matter. This will ensure that
everything that is defined inside our sub-Canvas will
be placed at the proper position in the final diagram.
However, any Canvas that has been defined, but
is not linked directly or indirectly with the main
Canvas, will not be drawn in the final diagram.

As an example, let’s say we want to make a
diagram that consists of two identical “eyes”. Instead
of defining two identical objects, we will create one in
a Canvas named form and put it at different positions
inside our main Canvas. Our “eye” consists of a
circle and an ellipse, both with the same center. All
we need to do for this is place them at the default
position of the Canvas. Finally, we can take this sub-
Canvas and place it at the two positions required.

a = Circle with [radius=10.0];

b = Ellipse with [xradius=20.0, yradius=10.0];

put a in form;

put b in form;

put form at (-20.0, 0.0) in main;

put form at (20.0, 0.0) in main;

4 Paths

SDDL offers support for the description of paths. The
way in which they are described is similar in syntax
with MetaPost and Asymptote, though with some
variations. A Path shape is described by linking
points together with specific linking symbols. To
draw a line between two points, the line symbol --
can be used. To link some points using a curve, use
the curved line symbol ~, which will use Asymptote’s
positioning algorithms to create a nice-looking curve
which passes through those points. For the moment,
user control over the curve is limited to beginning
and ending tangents, but could be expanded.

p1 = a--b--c;

p2 = a~b~c;

One of the other things you may want to do with
a Path is to create an Arrow out of it. SDDL defines
symbols for forward, backward and bidirectional ar-
rows for both linear and curved lines. Right now,
however, support is restricted to forward arrows.

p1 = a<-b--c->d;

p2 = a<~b~c~>d;

p3 = a<->b;

p4 = a<~>b;

Once a Path is defined, it can be used as any
other Shape. However, one of the main things that
you want to do is to put your Path somewhere. For
this, you can write something like this:

p = (0.0, 0.0) -- (10.0, 10.0);

put p in main;

This is the standard way to add Shapes to a
Canvas. However, since Paths are usually used to
link different Shapes together in the main Canvas,
special handling is done in SDDL. Namely, a Path

that is not explicitly assigned to a variable will be
automatically placed in the main Canvas. Therefore
the Path will be directly placed in main without any
explicit put expression. Thus, linking has its own
special syntax, which is more natural and convenient.
As an example, this program

(0.0, 0.0) -- (10.0, 10.0);

yields exactly the same result as the one just above.
Furthermore, points can be added and multiplied
by a scalar (as vectors). Using a dot to locate the
origin of the drawing, we can use the SDDL syntax
to create this example:

a = (10.0, 10.0);

a--2.0*a->(30.0, 0.0);

a~(-1.0)*a~(30.0, 0.0);

Finally, as we will now see, Shapes also usually
define specific points.

5 Drawing and linking shapes together

To draw a diagram, usually some shapes with a
specific structure are first laid down. Once that is
done, those objects are linked together with lines,
curves and arrows. However, these links must be
made between specific positions, usually derived from
one or more specific Shapes. For example, we may
want to link the northwestern point of a rectangle
with the point on a circle at an angle of 45 degrees.
These points could obviously be computed in advance.
However, this becomes quite problematic when points
are at peculiar angles or more complex relationships
between points and Shapes are needed. Worst of all,
if the position or any other property of a Shape is
changed, all computations will have to be redone.

To ease object linking, SDDL provides so-called
reference points. A reference point is a point that has
no static value, unlike points defined by a pair of two
real numbers. Instead, a reference point is defined
by its relationship to a specific Shape appearing at a
particular location. As a matter of fact, all reference

Mathieu Bourgeois and Roger Villemaire

TUGboat, Volume 31 (2010), No. 2 1003

points are defined along with the Shape because they
are a natural part of it. This ensures that we always
have nice-looking lines at exactly the positions we
want them to be.

However, a reference point’s exact position in a
Canvas will depend on the Shape’s position. Worse,
since the same Shape can appears at multiple loca-
tions in the same Canvas, we have to know which
occurrence we are talking about!

Therefore, SDDL introduces a feature called a
Drawing. A Drawing is an object that represents a
Shape at a particular position, i.e. a specific occur-
rence of a Shape in a Canvas. Whenever a Shape

is put inside a Canvas, a Drawing is returned and
can be assigned to a variable. This gives a way to
uniquely identify every occurrence of a Shape ap-
pearing in a Canvas. If the same Shape is placed
twice, two different Drawings will be returned, each
referring to a different occurrence of the same Shape.

a = Circle with [radius = 10.0];

d1 = put a at (-10.0, 0.0) in main;

d2 = put a at (10.0, 0.0) in main;

Once a drawing has been defined, a way to
access its points is needed. SDDL defines a syntax
for extracting points from drawings:

coord of 〈coord〉 (〈args〉) in 〈drawing〉
Here one specifies the kind of point to use (〈coord〉)
and any particular arguments required to obtain it.
The available points are Shape specific, so only those
kinds of points which make sense for the particular
Shape can be used. For instance one can get a point
at a particular angle on a Circle. This is also an
example where an additional argument is needed.
For instance, anglePoint(45.0) will give the point
at 45 degrees.

Finally, to reference the drawing from which we
take the point, its drawing Path (a dot separated
path) from the main diagram must be given.

a = Circle with [radius = 10.0];

d1 = put a at (-7.5, 0.0) in main;

d2 = put a at (7.5, 0.0) in main;

(coord of anglePoint(0.0) in main.d1) --

(coord of anglePoint(180.0) in main.d2);

In this example, a line between two identical circles
is drawn. The drawing Paths are simple here, since
both drawings are made directly in main. Thus, only
main followed by the drawing name is needed.

Simply giving a Drawing is not sufficient in order
to make reference points non-ambiguous; complete
drawing Paths are required, as we will now show.
Let’s go back to the two eyes we drew previously.

The eye was defined by a circle and an ellipse, both
put inside a sub-Canvas. Now, let’s say we want to
draw a line between the two circles. Each of those
circles is defined in the sub-Canvas and they are, as
a matter of fact, the same Drawing a. Adding a link
between a and itself would add a link between the
sub-Canvas’ circle and itself (what could this mean?).
Adding the sub-Canvas to the main Canvas twice,
as we did before, would just duplicate this structure
inside the main Canvas.

But since a Canvas is a Shape, we get a drawing
when we put the sub-Canvas inside main. We can
therefore identify each inner circle by listing the
drawings required to access them, as shown in the
following SDDL example. Thus, we can always link
together Shapes that are deeply nested inside a sub-
Canvas.

a = Circle with [radius=10.0];

b = Ellipse with [xradius=20.0, yradius=10.0];

c = put a in form;

put b in form;

f1 = put form at (-20.0, 0.0) in main;

f2 = put form at (20.0, 0.0) in main;

(coord of anglePoint(180.0) in main.f1.c) ->

(coord of anglePoint(0.0) in main.f2.c);

6 Programming constructs and lists

SDDL also defines typical programming constructs.
For instance lists are created and elements accessed
in a syntax similar to most other dynamic languages.
Since the content of a list is a general Java Object,
you can create a list of objects that are not of the
same type. Thus, an assignment like

l = [2.0, (0.0, 0.0), [], a--b];

is perfectly legal, even if not typically very useful! A
more typical use of lists would be

list = [(0.0, 0.0), (10.0, 10.0)];

l = list[0];

l2 = list[1];

l--l2;

Lists are nice, but to use them properly, ade-
quate programming constructs are needed, such as
for and while loops. SDDL defines those, permitting
us to draw arrays of Shapes or define points through
a simple list.

The ability to use loops significantly simplifies
many diagrams in computer science. In this example,
we first define a list of points. Afterward, using a for
loop, we link those points into a linear Path.

a = [(10.0, 10.0), (20.0, 10.0),

(20.0, 20.0), (10.0, 20.0)];

for i from 0 to 2 do

Drawing structured diagrams in SDDL

1004 TUGboat, Volume 31 (2010), No. 2

a[i]--a[i+1];

end

Alternatively, we could get the same result using
the following while loop.

i = 0;

while i != 3 do

a[i]--a[i+1];

i = i + 1;

end

7 Functions

SDDL also permits the creation of functions inside
the code. Those must be written before the diagram
description. A SDDL function is defined with the
keyword fun. The list of arguments does not need to
be typed, only named. The return type (if it exists)
does not need to be specified either. To call the
function in the resulting code, a typical C-like call is
used.

fun dropMany(s, i, v, n, c){

for j from 1 to n do

put s at i + j*v in c;

end

}

circle = Circle with [radius = 5.0];

dropMany(circle, (0.0, 0.0),

(5.0, 0.0), 10.0, main);

In this case, we define a function that drops
many instances of a Shape s at different positions
on a Canvas c. The positions of the Shape are deter-
mined by an initial point i and a translation vector
v. Finally, the number of Shapes placed is also given
as a parameter n. Each Shape is then placed at the
initial point translated by the translation vector a
certain number of times. This permits us to create
many circles along one line.

One important point is the parameter for the
Canvas in which we place the Shapes. However, we
pass main as our parameter. The reason for this
is that SDDL does not possess global variables. A
function can only access its parameters and variables
that have been defined inside the function. Thus,
trying to place something in main from inside a func-
tion will yield an error message saying the variable
main is unknown.

8 Primitives

SDDL, as mentioned before, is written in Java. One
of the nice features of Java is its libraries. Many
classes have been written for any number of different
tasks and the number of functions and algorithms
implemented is astonishing. To rewrite libraries that
are already defined in Java or to link them one by

one in SDDL seemed pointless. It is much nicer to
directly use those functions, since they’re already
there.

Since Java is a reflexive language, in the sense
that the program knows about itself and can modify
itself at will, functions can be dynamically accessed
at runtime. We already use this feature to simplify
the definition of the SDDL interpreter: the interpreter
doesn’t have to know every possible type of Shape

in order to work. Using these same mechanisms
permits loading classes at runtime and gives the user
the power to call from inside SDDL any Java function.

This is done through so-called primitives, which
are defined using the keyword primitive followed
by the name of the function, as it will appear in
SDDL. Following that, two strings are given: one
for the package in which the function is defined and
one for the name of the function as it was defined in
Java. Any primitive declaration must be made prior
to any function definition.

Let’s look at an example. One of the main
things a diagram description language would require
is some basic mathematics and geometry libraries.
Java possesses a nice java.lang.math package which
we would like to use, especially the sin and cos func-
tions. For this, we will need to define two primitives.

primitive static sin "java.lang.Math" "sin";

primitive static cos "java.lang.Math" "cos";

Once they are defined, they can be called just
like any other SDDL functions. In this case, we
will use those functions to place circles around an
invisible circle.

for i from 1 to 6 do

put Circle with [radius = 5.0] at

(20.0 * cos(i * 3.14 / 3.0),

20.0 * sin(i * 3.14 / 3.0))

in main;

end

9 A concrete example

Now that we have all our tools, let’s use SDDL to
describe a simple diagram of an automaton. This is
the complete code, along with the resulting image.

circle1 = Circle with [radius = 10.0];

circle2 = Circle with [radius = 12.0];

ellipse = Ellipse with [xradius = 50.0,

yradius = 20.0];

circle = put circle1 at (-30.0, 0.0) in form;

put circle1 at (30.0, 0.0) in form;

put circle2 at (30.0, 0.0) in form;

Mathieu Bourgeois and Roger Villemaire

TUGboat, Volume 31 (2010), No. 2 1005

put ellipse in form;

d1 = put form at (100.0, 100.0) in main;

d2 = put form at (100.0, 50.0) in main;

d3 = put form at (100.0, -50.0) in main;

put Text with [text="$N(p_1)$"]

at (100.0, 100.0) in main;

put Text with [text="$N(p_2)$"]

at (100.0, 50.0) in main;

put Text with [text="\dots"]

at (100.0,0.0) in main;

put Text with [text="$N(p_n)$"]

at (100.0, -50.0) in main;

put Text with [text = "s_0"]

at (0.0, 20.0) in main;

d4 = put circle1 at (0.0, 20.0) in main;

(coord of anglePoint(70.0) in main.d4)->

(coord of anglePoint(180.0) in main.d1.circle);

(coord of anglePoint(0.0) in main.d4)->

(coord of anglePoint(180.0) in main.d2.circle);

(coord of anglePoint(-70.0) in main.d4)->

(coord of anglePoint(180.0) in main.d3.circle);

N(p1)

N(p2)

. . .

N(pn)

s0

10 Modifying the hierarchy by
adding shapes

Using what has been described above, most diagrams
can be created. However, many simplifications can
be made and some domains may find it relevant to
add classes specific to their trade. SDDL eases the
modification of the Java hierarchy underneath the
language by using reflexivity. Any user who respects
some basic guidelines will be able to have its class
work automatically in SDDL without any specific
linking required.

To do this, every class must possess a certain
number of properties. Those properties are defined
through setters and getters. For instance, for the

radius of a circle, these are called setRadius and
getRadius. Any property that follows this rule will
be accessible.

Furthermore, an empty constructor must also be
defined that sets, as much as possible, default values
for all properties of the defined Shape. There are also
some small functions to be defined, like the draw and
obtainPath functions. Any reference points must
also be defined with a function to obtain them.

As an example, let’s say we would like to add
a class to represent a cloud. A cloud will have a
number of “spikes” and a size. The class definition
(without function definition) that we would require
would be the following:

public class Cloud extends Shape{

double size;

int numberOfSpikes;

public Cloud(){...}

public void setSize(double size){...}

public double getSize(){...}

public void setNumberOfSpikes(int n){...}

public int getNumberOfSpikes(){...}

public void draw(AbstractPoint a,

PrintWriter w){...}

public Path obtainPath(){...}

}

11 Future additions and availability

SDDL is available now at http://www.info2.uqam.
ca/~villemaire_r/Recherche/SDDL/. It is func-
tional, though not by any means complete. Many
additional Shapes could be added (in particular tree
and graph classes) and options could be added to
existing classes. Development of the application con-
tinues for the time being and a more thorough version
will be made available.

References

[1] John C. Bowman and Andy Hammerlindl.
Asymptote: A vector graphics language.
TUGboat: The Communications of the TEX
Users Group, 29:288–294, 2008.

� Mathieu Bourgeois
Université du Québec à Montréal
Montréal, Canada
bourgeois dot mathieu dot 2 (at)

courrier dot uqam dot ca

� Roger Villemaire
Université du Québec à Montréal
Montréal, Canada
villemaire dot roger (at) uqam dot ca

http://intra.info.uqam.ca/

personnels/Members/villemaire_r

Drawing structured diagrams in SDDL

http://www.info2.uqam.ca/~villemaire_r/Recherche/SDDL/
http://www.info2.uqam.ca/~villemaire_r/Recherche/SDDL/

	What is SDDL?
	Canvas and shapes
	Structuring multiple canvases
	Paths
	Drawing and linking shapes together
	Programming constructs and lists
	Functions
	Primitives
	A concrete example
	Modifying the hierarchy by adding shapes
	Future additions and availability

