
Browser-Based Enforcement of Interface

Contracts in Web Applications with BeepBeep

Sylvain Hallé1 and Roger Villemaire2

1 University of California, Santa Barbara
2 Université du Québec à Montréal

shalle@acm.org, villemaire.roger@uqam.ca

Abstract. BeepBeep is a lightweight runtime monitor for Ajax web ap-
plications. Interface specifications are expressed internally in an exten-
sion of LTL with first-order quantification; they can be transparently
enforced on the client side using a small and invisible Java applet. Vio-
lations of the specification are reported on-the-fly and prevent erroneous
or out-of-sequence XML messages from reaching the server.

1 Introduction and Motivation

Asynchronous JavaScript and XML (Ajax) refers to a collection of technologies
used to develop rich and interactive web applications. A typical Ajax client runs
locally in the user’s web browser and refreshes its interface using JavaScript
according to user input. Popular Ajax applications, such as Google Maps and
Facebook, communicate in the background with a remote server; in many cases,
the server’s functionality is made publicly available as an instance of a web ser-
vice, which can be freely accessed by any third-party Ajax application. These
services cannot be invoked arbitrarily: their public documentation specifies con-
straints on the content of each message and the proper sequence in which they
can be exchanged. Yet, nothing prevents an Ajax application from sending mes-
sages violating this interface specification. In that event, the server can interrupt
the communication, reply with an error message, or more insidiously, continue
the conversation without warning and eventually send nonsensical or corrupt
data. Preventing erroneous or out-of-sequence messages from being sent to the
server is desirable, saving bandwidth and allowing client non-conformance to
be detected early. To this end, we developed BeepBeep, a lightweight runtime
monitor for Ajax applications. BeepBeep’s input language is a rich extension
of LTL, called LTL-FO+, which includes first-order quantification over mes-
sage elements and values of a global system clock. By transparently observing
the trace of all incoming and outgoing messages inside an Ajax application,
BeepBeep can monitor and enforce on-the-fly a wide range of interface con-
tracts, including complex dependencies between message contents, sequences,
and time.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 648–653, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Browser-Based Enforcement of Interface Contracts 649

2 An Example

To illustrate our approach, we consider a library which makes its catalogue
available online through a web service interface, allowing users to browse the
library catalogue, borrow and return books. Each of these operations can be
invoked by sending the proper XML message; for example, the following fragment
represents a typical XML message for borrowing a list of books, identified by
their book IDs:

<message xmlns=‘‘http://example.com/library’’>
<action>borrow</action>
<books>

<id>837</id>
<id>4472</id>

</books>
</message>

(1)

The documentation for the library web service imposes constraints on the mes-
sages that can be sent by a client, such as these ones:

1. Every “return” message must precede any “borrow” message
2. Any book can be involved in at most one borrow and/or return operation
3. Any two messages must be at most 60 seconds apart

3 The BeepBeep Runtime Monitor

A standard Ajax application communicates with a web service by sending and re-
ceiving messages through the standard XMLHttpRequest object provided by the
local browser, as shown in the left part of Figure 1. BeepBeep is a lightweight
tool that wraps around this object to monitor and enforce interface contracts
at runtime (Figure 1, right).1 The first part of BeepBeep is a small Java ap-
plet called the BeepBeepMonitor. This applet is responsible for actually keeping
track and analyzing the incoming and outgoing messages with respect to an
interface contract. The second part is a JavaScript file providing a class called
XMLHttpRequestBB, which behaves exactly like the standard XMLHttpRequest,
with the exception that incoming and outgoing messages, before being actually
sent (or returned), are deviated to the applet and possibly blocked if violations
are found.

Including BeepBeep into an existing Ajax application is simple. It suffices to
host two files (the .jar applet and the .js include) in the same directory as the
Ajax application, and to load BeepBeep by adding a single line at the beginning
of the original client’s code. Any invocations of the original XMLHttpRequest
object can then be replaced by calls to XMLHttpRequestBB. No other changes to
the code are required: from this point, BeepBeep intercepts the messages and
transparently monitors the conversation.
1 BeepBeep and its source code are available for download under a free software license

at http://beepbeep.sourceforge.net/

http://beepbeep.sourceforge.net/

650 S. Hallé and R. Villemaire

Local browserLocal browser

Web
serviceXMLHttp

Request

JavaScript
code

JavaScript
code

Hook

XMLHttp
RequestBB

BeepBeep
Monitor

Web
service

Fig. 1. Standard (left) and BeepBeep-enabled (right) Ajax applications

When BeepBeep detects that a message violates a contract property, its de-
fault behaviour is to block the message and to pop a window alerting the user,
showing the plain-text description associated with that property. Alternatively,
BeepBeep can be asked to call a function, called a hook, provided by the appli-
cation developer.

4 The BeepBeep Contract Specification Language

BeepBeep’s language for contract specification is an extension of Linear Tem-
poral Logic called LTL-FO+ [6], whose models are sequences of messages. Filter
expressions are used to fetch values inside a message; they return a set of val-
ues, depending on the current message. They are expressed in a subset of the
XML Path Language XPath [3]. For example, on the previous XML message
(1), the filter /message/books/id returns the set {837, 4472}. First-order quan-
tifiers are used to express universal or existential properties over sets returned
by filter expressions. Hence the formula ∀ x ∈ /message/books/id : x �= 123
states that, in the current message, no id element has value 123. These quanti-
fiers can then be freely mixed with the traditional LTL temporal modalities and
Boolean connectives to express complex properties correlating message contents
and sequentiality. For example, consider the following formula:

G ∀ a1 ∈ /message/action : (a1 = borrow→
X G (∀ a2 ∈ /message/action : a2 �= return))

The formula states that in every message, if the action element has value borrow,
then from now on, no message can have an action element with value return.
This is the formal translation of constraint 1 mentioned in Section 2. Quantifica-
tion can be used to compare values fetched in messages at different points in the
trace. For example, the formal translation in LTL-FO+ of constraint 2 stipulates
that for any book ID i1 appearing in a message, then no future message can have
some book ID i2 such that i2 = i1:

G (∀ i1 ∈ /message/books/id : XG (∀ i2 ∈ /message/books/id : i1 �= i2))

Finally, metric constraints can be expressed by providing a special filter expres-
sion, called “TIME”, which always returns a single value: the time of a global

Browser-Based Enforcement of Interface Contracts 651

system clock at the moment it is evaluated. Timed properties hence become a
special case of quantification, as the translation of constraint 3 shows:

G (∀ t1 ∈ TIME : X (∀ t2 ∈ TIME : t2 − t1 < 60))

5 Tool Highlights and Related Work

Besides its ease of use, the main advantage of BeepBeep is that the specification
of the contract is completely decoupled from the code required for its actual
monitoring. The contract is located on the server side in a file separate from
the monitor itself, which is generic. This is in contrast with [7, 9, 11], which
require the compilation of a contract into executable Java code –an operation
which must be repeated whenever the contract is changed. This requirement is
ill-suited to the highly volatile nature of web service interactions. In BeepBeep,
changing the contract can be done dynamically without changing anything to
the clients: the monitoring plan is generated automatically from any LTL-FO+

formula passed to the monitor.
This dynamicity is possible thanks to BeepBeep’s monitoring algorithm. It is

based on an algorithm presented in [5], which creates the Büchi automaton for
a given LTL formula. This algorithm performs on-the-fly and generates the au-
tomaton as the sequence of states unwinds. Although LTL monitoring requires
exponential space [12], in practice the on-the-fly algorithm generates a subset of
the automaton with negligible space. BeepBeep’s monitoring procedure, detailed
in [6], is an extension of this algorithm, adapted for LTL-FO+’s first-order quan-
tification on message elements. It includes a number of optimizations, such as the
simplification of unsatisfiable subformulæ and the use of three-valued logic [2]
to allow for “inconclusive” trace prefixes.

BeepBeep distinguishes itself from related work in a number of aspects:

– Message monitoring. BeepBeep monitors conversations specified at the XML
message level; it is independent from any client implementation and does not
refer to any internal variable of the client’s source code.

– Rich input language. BeepBeep’s LTL-FO+ allows first-order quantification
over XPath expressions to fetch values inside messages, store them and com-
pare them at a later time. Contrarily to similar message-based logics, such
as LTL-FO [4], there is no restriction on the use of temporal operators inside
quantifiers, and vice versa. BeepBeep can handle arbitrary nested structures;
no upper bound on the arity of the messages needs to be fixed in advance.

– Client-side monitoring. Erroneous messages are trapped at the source, saving
bandwidth and CPU time on the server. This contrasts with [10, 1] where
monitoring of the conversation is done on the server side.

– Non-invasive. Runtime monitoring of arbitrary interface contracts can be en-
forced transparently with minor changes to the code, apart from including
BeepBeep. Other approaches, such as [9], require heavier code instrumenta-
tion in order to correctly intercept non-compliant behaviour.

652 S. Hallé and R. Villemaire

– Low footprint. The total volume that needs to be downloaded by an Ajax
application using BeepBeep (JavaScript + applet) is less than 50 kb, and
this must be done only once when the application starts.

– Universal. BeepBeep works off-the-shelf on any browser supporting Java ap-
plets, including proprietary software with closed source code. It does not
require a modified version of the browser (hooks) to work, as is the case for
Browser-enforced Embedded Policies (BEEP) described in [8].

6 Experimental Evaluation

BeepBeep has been tested on Ajax applications in various scenarios.2 We com-
pared a plain Ajax client using a real-world web service, the Amazon E-Commerce
web service, against the same client communicating through BeepBeep and mon-
itoring 11 different contract properties. Since we did not have access to Amazon’s
file server, the contract file was located on the same server as BeepBeep for the
needs of the experiment. Each version of the client sent to Amazon the same set
of randomly generated message sequences; the difference in the elapsed time was
measured and plotted in Figure 2. Since the experiment involved actual commu-
nications with the service, it was repeated on 20 different traces to average out
punctual differences caused by the variable latency of the network (explaining the
negative values). Our findings indicate that on low-end computer (Asus EeePC
with a 600 MHz processor), monitoring LTL-FO+ contract properties produces
an average overhead of around 3%, a negliglble 10 ms per message in absolute
numbers. As a rule, the state of the network accounts for wider variations than
the additional processing required by the monitor.

-20

0 20 40 60 80 100 120 140 160 180 200

-10

0

10

20

30

T
im

e
d
if

fe
re

n
ce

(%
)

Trace length

Average

Fig. 2. Overhead for a BeepBeep-enabled Ajax client

Therefore, we conclude that BeepBeep can efficiently monitor LTL-FO+ run-
time properties at a very low cost. By providing a transparent and very simple

2 See http://beepbeep.sourceforge.net/examples for more details.

Browser-Based Enforcement of Interface Contracts 653

way of enforcing rich interface contracts into virtually any existing Ajax applica-
tion, BeepBeep contributes to increase the reach of logic and formal verification
approaches in the development of everyday web applications.

References

1. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: ICWS, pp. 63–71. IEEE Com-
puter Society, Los Alamitos (2006)

2. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer,
Heidelberg (2006)

3. Clark, J., DeRose, S.: XML path language (XPath) version 1.0, W3C recommen-
dation (1999)

4. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web
services. In: Deutsch, A. (ed.) PODS, pp. 71–82. ACM, New York (2004)

5. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) PSTV. IFIP
Conference Proceedings, vol. 38, pp. 3–18. Chapman & Hall, Boca Raton (1995)

6. Hallé, S., Villemaire, R.: Runtime monitoring of message-based workflows with
data. In: EDOC, pp. 63–72. IEEE Computer Society Press, Los Alamitos (2008)

7. Hughes, G., Bultan, T., Alkhalaf, M.: Client and server verification for web services
using interface grammars. In: Bultan, T., Xie, T. (eds.) TAV-WEB, pp. 40–46.
ACM, New York (2008)

8. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: Williamson, C.L., Zurko, M.E., Patel-Schneider,
P.F., Shenoy, P.J. (eds.) WWW, pp. 601–610. ACM, New York (2007)

9. Krüger, I.H., Meisinger, M., Menarini, M.: Runtime verification of interactions:
From MSCs to aspects. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 63–74. Springer, Heidelberg (2007)

10. Mahbub, K., Spanoudakis, G.: Run-time monitoring of requirements for systems
composed of web-services: Initial implementation and evaluation experience. In:
ICWS, pp. 257–265. IEEE Computer Society, Los Alamitos (2005)

11. Rosu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: This time
with calls and returns. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 51–68.
Springer, Heidelberg (2008)

12. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Au-
tom. Softw. Eng. 12(2), 151–197 (2005)

	Introduction and Motivation
	An Example
	The BeepBeep Runtime Monitor
	The BeepBeep Contract Specification Language
	Tool Highlights and Related Work
	Experimental Evaluation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CMMI10
 /CMTI10
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

